SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

COURSE TITLE: METALLURGY

CODE NO. MET 207-3 SEMESTER: FOUR

PROGRAM: MECHANICAL TECHNICIAN & MECHANICAL DRFTG. TECHNICIAN

AUTHOR: DENNIS SOCCHIA

DATE: 1990-12-12 PREVIOUS OUTLINE DATED:1988-06~14

Z/agutta]***/b**/ 97 **APPROVED:** Date Dean

COURSE CODE: MET 207-3

TOTAL CREDIT HOURS: 45

PREREQUISITE(S):

Grade 12 reading, writing and comprehension skills or the equivalent.

I. <u>PHILOSOPHY/GOALS</u>: To provide students with a reasonable understanding of the concepts and procedures related to the fields of extractive and physical metallurgy, heat treatment, metals processing and mechanical testing. Ultimately, students should have sufficient background to assist others in the solution of work related (metallurgical) problems.

II. STUDENT PERFORMANCE OBJECTIVES;

Upon successful completion of this course, the student will:

- 1. Understand the process of extractive metallurgy specific to iron and steelmaking.
- 2. understand the concepts and procedures related to the heat treatment of carbon steels.
- 3. Understand procedures related to the shaping and processing of metals.
- 4. Understand and apply the procedures required for basic mechanical testing of metals.
- III. TOPICS TO BE COVERED:
 - 1. Course Introduction and Orientation
 - 2. The production of Iron and Steel
 - 3. The Heat Treatment of Carbon Steel.
 - 4. The Surface Treatment of Metals
 - 5. The Shaping and Firming of Metals
 - 6. The Properties of Metals
- NOTE: Course 'Objectives' and Topics* are subject to change due to the following variables:
 - i) field trips
 - ii) holidays
 - iii) equipment failure
 - iv) illness

COURSE	E NAME	: Metallurgy	COURSE CODE	: MET 20)7-3
SPECIFIC OBJECTIVES FOR METALLURGY - MET 207-3					
1) II	NTROD	UCTION AND ORIENTATION	- 2 HRS.		Handouts
1 2 3 4 5) Ident) Ident) Ident) Ident outlin outlin a) at b) at c) du d) re e) te f) co g) er i) Ident 	ent should be given an opport tify and list the topics covered tify and list the general objecti tify and list the various metho in this course outline. tify the grading system used in the with respect to A+, A, B, O tify the policy of this course we ttendance ttitude ue dates e-writes sting policies ourse credits mployed students tify and list the various teachin course outline.	in this course. ves of this course. ds of evaluation n this course C, R, X. Tith respect to:		
2)	PRODU	JCTION OF IRON AND STEE	EL - 4 HRS		Text
	1) Na 2) W ea 3) Li	ident should be given an oppo ame 4 iron ore minerals found trite the chemical formula that ach of the iron ore minerals. st the various impurities and	in nature. represents		p14
	4) Na 5) De	und in iron ores. ame the furnace used to produ efine the term "reduction" wit e blast furnace operation.			p19
	6) Li 7) Co	ist 3 major steelmaking furnace ompare the "quality" of steels arious steelmaking furnaces.			p29-31-34
	8) Li	st the general types of cast in eels, and rolled steels in use t			Notes
	9) Id st to	lentify cast irons, cast steels, eels, low alloy steels, stainless ol steels according to their ap ontent, significant alloys and r	plain carbon steels and proximate carbon		Handouts
	10) Li	st and briefly describe the var got poured steels.			Text p4I-42
	11) Ex is	xplain (briefly) why the making one of the most important st brication of steels.			Text p39
	12) Li	ist and briefly describe the ma bund in ingot poured steels.	jor defects		Text p39-40

- 0 -

4)

3) HEAT TREATMENT - 8 HRS

The student should be given an opportunity to:

1)	Develop a general understanding of the iron: iron-carbide system for steels with respect to: a) Lower Critical Temperature pl60,162 b) Upper Critical Temperature c) Eutectoid Point and Composition d) Existing Equilibrium Structures e) The effects of Heating and Cooling with	Text pl47
2)	respect to Critical Temperatures. Explain the changes in eutectoid, hypoeutectoid and hypereutectoid steels when they are heated from room temperature to above the upper critical temperature.	Handouts
3)	Identify and select the proper temperature ranges for the following heat treating operations:	Text pl66
4) 5) 6) 7)	annealhardennormalizetemperList the three requirements necessary tosuccessfully harden steels.Explain the formation of martensite as a non-equilibrium structure.State the theory that explains why martensitehas such a high hardness.Compare the hardness for the following ferrouscrystalline structures:ferritemartensite	Text pl71-173 Handout
SU	Pearlite cementite	
The 1) 2) 3)	e student should be given an opportunity to: State the purpose for which carburizing operations are carried out. State the 3 main carburizing processes.	Text p205~206

- 3) State the initial carbon content of steels used in carburizing operations.
- 4) Describe the effects of carburizing process on:a) The "final" carbon content of the steels.b) The "final" microstructure and hardness of the
 - b) The "final" microstructure and hardness of the steels.
- 5) State which gas is used in the nitriding. process.
- State the relationship between the temperatures used in the nitriding process as compared to the carburizing process.
- 7) Identify the type of steel used in the nitriding Text p214 process.

5)

8)	State which elements (in addition to carbon, manganese and silicon) are contained in steels	p215
9) 10) 11)	used for the nitriding process. Briefly explain how "free" nitrogen is produced. Briefly explain how these nitrides harden the steel. Describe the effects of the nitriding process on: a) The depth of case.	p216
12) 13)	 b) The hardness of the core. State the purpose for which flame hardening and induction hardening operations are carried out. State the initial carbon content of steels used 	Text p220-223
14)	in the flame and induction hardening processes. Describe the effects of the flame and induction hardening processes on:	p==0 ==0
	 a) The "final" carbon content of the steels. b) The "final" microstructure and hardness of the steels. 	
SH	APING AND FORMING OF METALS - 5 HRS	Text
The 1)	student should be given the opportunity to: State the reason for placing ingots into	p45
2)	soaking pits prior to rolling. State the two purposes served by hot rolling and hot forging operations.	p46
3)	Draw the roll configurations for: a) Two-high reversing mill b) Universal Mill c) Four-high Mill	p50
4)	State how the rolls used to produce structural shapes differ from those used to produce flat sheet.	p51
5)	Define the terms; a) Hot working b) Forging	p53
6)	List 4 changes of internal structure in metals resulting from hot working.	p56
7) 8)	Define the term "recrystallization". State the most practical way to bring about recrystallization and grain refinement.	p56 p56
9)	Describe the effects of plastic deformation on the dendritic structure and segregated impurities of ingot steels.	p56-57 -58-59
10) 11)	State the purpose and effects of cold rolling operations. State and describe the two broad classes of	p71
12)	cold working operations. Describe the deformation of aggregates in steel and other aggregates as a result of: a) Cold Working b) Hot Working	p72

COURSE CODE: MET 207-3

6) **PROPERTIES OF METALS** - 3 HRS

The 1)	 e student should be given an opportunity to: Define the following terms: a) Yield Strength b) Ultimate Tensile Strength c) Fatigue Strength d) Elasticity e) Ductility 	Text p96 97 98
	f) Toughness	
	g) Hardness	
2)	Identify, list and compare selected mechanical properties of identified ferrous and non-ferrous metals.	plOl
3)	Identify and list the carbon content and commercial	p90
	use of selected carbon steels.	
4)	Explain the relationship between carbon content	p91
- \	and the properties of hot worked steel.	~~
5)	Explain the susceptibility to corrosion of metals	p98
	with respect to their relative position on the electrochemical series.	99

LAB EXPERIMENTS/OBJECTIVES FOR METALLURGY - MET 207-3

1) ROCKWELL HARDNESS - 2 HRS

The student should be given an opportunity to:

- 1) Prepare and test steels for their initial hardness.
- 2) Explain the initial hardness of a steel in relation to its carbon content, and the P.F.C.S. chart.
- 3) Estimate the initial microstructure.

6 SAMPLES/GROUP REQUIRED

2) NORMALIZING - 3 HRS

The student should be given an opportunity to:

- 1) Determine the proper soaking time and temperature for his/her steel.
- 2} Heat treat steels for the purpose of changing their microstructure and hardness.
- 3) Prepare and test steels for their normalized hardness.
- 4) Recognize and explain a change in hardness due to normalizing.
- 5) Prepare and examine samples for microstructure.
- 6) Explain the changed hardness of a steel in relation to its carbon content, new microstructure and the P.F.C.S. chart.
- 7) Name the new microstructure.
- 8) Describe the new microstructure.

6 SAMPLES/GROUP FROM EXPERIMENT # 1

3) QUENCH HARDENING - 3 HRS

The student should be given an opportunity to:

- 1) Determine the proper soaking time and temperature for his/her steel.
- 2) Heat treat steels for the purpose of changing their microstruture and increasing the hardness.
- 3) Prepare and test samples for their quenched hardness.
- 4) Recognize and explain an increase in hardness due to water and oil quenching.
- 5) Prepare and examine samples for microstructure.
- 6) Explain the increased hardness of a steel in relation to its carbon content, new microstructure and the P.F.C.S. chart.
- 7) Name and describe the new microstructure.

3 **SAMPLES/GROUP** FROM EXPERIMENT # 2

Handouts

Handouts

Handouts

4) TEMPERING - 3 HRS

Handouts

Handouts

The student should be given an opportunity to:

1) Determine the proper tempering time and temperature for his/her steel.

- 8 -

- 2) Heat treat steels for the purpose of reducing their quenched hardness.
- 3) Prepare and test samples for reduced hardness.
- 4) Prepare and examine samples for microstructure.
- 5) Explain the steels reduced hardness in relation to its carbon content, microstructure and P.F.C.S. chart.
- 6) Name and describe the "new" microstructure.

3 SAMPLES/GROUP FROM EXPERIMENT # 3

5) HEAT TREAT REVIEW - 2 HRS

The student should be given an opportunity to:

- 1) Review, compare and discuss the lab data.
- 2) Discuss changes in hardness and microstructure with respect to:
 - P.F.C.S. chart
 - Iron-carbide system
 - continuous cooling transformation phase diagrams.
- 3) Define the terms:
 - normalize
 - quench harden
 - temper
- 4) Discuss lab reports and format.

EVALUATION METHODS: (INCLUDES ASSIGNMENTS, ATTENDANCE REQUIREMENTS, ETC.):

General Assessment	Final Mark *		
A + = 90 - 100%	Test #1	25%	
A = 80 - 89%	Test #2	25%	
B = 70 - 79%	Test #3	25%	
C = 60 - 69%	Report #1	25%	
$R \bullet = 0 - 59\%$	Attendance ** (See A	Attached)	

VI. REQUIRED STUDENT RESOURCES:

"Metallurgy" by John and Weeks (5th edition) American Technical Publishers.

Safety Glasses - (Impact Resistant, CSA Approved)

VII. ADDITIONAL RESOURCE MATERIALS AVAILABLE IN THE COLLEGE LIBRARY BOOK SECTION:

TO BE ANNOUNCED

VIII. SPECIAL NOTES:

* Student evaluations concerning the 'Final Mark' are further affected by the conditions set forth in the printed handout 'Guidelines for Metallurgy*. BE SURE TO OBTAIN A COPY FROM YOUR INSTRUCTOR.

Special guidelines for attendance are included in the above noted paper.